Reconfiguration of network hub structure after propofol-induced unconsciousness.

نویسندگان

  • Heonsoo Lee
  • George A Mashour
  • Gyu-Jeong Noh
  • Seunghwan Kim
  • UnCheol Lee
چکیده

INTRODUCTION General anesthesia induces unconsciousness along with functional changes in brain networks. Considering the essential role of hub structures for efficient information transmission, the authors hypothesized that anesthetics have an effect on the hub structure of functional brain networks. METHODS Graph theoretical network analysis was carried out to study the network properties of 21-channel electroencephalogram data from 10 human volunteers anesthetized on two occasions. The functional brain network was defined by Phase Lag Index, a coherence measure, for three states: wakefulness, loss of consciousness induced by the anesthetic propofol, and recovery of consciousness. The hub nodes were determined by the largest centralities. The correlation between the altered hub organization and the phase relationship between electroencephalographic channels was investigated. RESULTS Topology rather than connection strength of functional networks correlated with states of consciousness. The average path length, clustering coefficient, and modularity significantly increased after administration of propofol, which disrupted long-range connections. In particular, the strength of hub nodes significantly decreased. The primary hub location shifted from the parietal to frontal region, in association with propofol-induced unconsciousness. The phase lead of frontal to parietal regions in the α frequency band (8-13 Hz) observed during wakefulness reversed direction after propofol and returned during recovery. CONCLUSIONS Propofol reconfigures network hub structure in the brain and reverses the phase relationship between frontal and parietal regions. Changes in network topology are more closely associated with states of consciousness than connectivity and may be the primary mechanism for the observed loss of frontal to parietal feedback during general anesthesia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thalamus, Brainstem and Salience Network Connectivity Changes During Propofol-Induced Sedation and Unconsciousness

In this functional magnetic resonance imaging study, we examined the effect of mild propofol sedation and propofol-induced unconsciousness on resting state brain connectivity, using graph analysis based on independent component analysis and a classical seed-based analysis. Contrary to previous propofol research, which mainly emphasized the importance of connectivity in the default mode network ...

متن کامل

Fronto-Parietal Connectivity Is a Non-Static Phenomenon with Characteristic Changes during Unconsciousness

BACKGROUND It has been previously shown that loss of consciousness is associated with a breakdown of dominating fronto-parietal feedback connectivity as assessed by electroencephalogram (EEG) recordings. Structure and strength of network connectivity may change over time. Aim of the current study is to investigate cortico-cortical connectivity at different time intervals during consciousness an...

متن کامل

Neurophysiological correlates of sevoflurane-induced unconsciousness.

BACKGROUND Recent studies of anesthetic-induced unconsciousness in humans have focused predominantly on the intravenous drug propofol and have identified anterior dominance of alpha rhythms and frontal phase-amplitude coupling patterns as neurophysiological markers. However, it is unclear whether the correlates of propofol-induced unconsciousness are generalizable to inhaled anesthetics, which ...

متن کامل

GABAergic ventrolateral pre-optic nucleus neurons are involved in the mediation of the anesthetic hypnosis induced by propofol

Intravenous anesthetics have been used clinically to induce unconsciousness for seventeen decades, however the mechanism of anesthetic‑induced unconsciousness remains to be fully elucidated. It has previously been demonstrated that anesthetics exert sedative effects by acting on endoge-nous sleep‑arousal circuits. However, few studies focus on the ventrolateral pre‑optic (VLPO) to locus coerule...

متن کامل

Electroencephalographic effects of ketamine on power, cross-frequency coupling, and connectivity in the alpha bandwidth

Recent studies of propofol-induced unconsciousness have identified characteristic properties of electroencephalographic alpha rhythms that may be mediated by drug activity at γ-aminobutyric acid (GABA) receptors in the thalamus. However, the effect of ketamine (a primarily non-GABAergic anesthetic drug) on alpha oscillations has not been systematically evaluated. We analyzed the electroencephal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Anesthesiology

دوره 119 6  شماره 

صفحات  -

تاریخ انتشار 2013